

Please solve the following exercises and submit **BEFORE 12:00 pm** (noon) of Tuesday 9th, December.

Exercise 1 (10	point	s)
		-	

Give a recursive algorithm for computing nx whenever n is a positive integer and x is an integer, using just addition.

Exercise 2

Give a recursive algorithm for finding the sum of the first n positive integers and prove that it is correct.

Exercise 3	(10	points)
		-	_

Give a recursive algorithm for finding the maximum of a finite set of integers, making use of the fact that the maximum of n integers is the larger of the last integer in the list and the maximum of the first n - 1 integers in the list.

Exercise 4

Give a recursive algorithm for finding a mode of a list of integers. (A mode is an element in the list that occurs at least as often as every other element.)

Exercise 5

Describe a recursive algorithm for multiplying two non-negative integers x and y based on the fact that $xy = 2(x \cdot (y/2))$ when y is even and $xy = 2(x \cdot |y/2|) + x$ when y is odd, together with the initial condition xy = 0 when y = 0. Prove that your algorithm is correct.

Exercise 6

Devise a recursive algorithm to find a^{2^n} , where a is a real number and n is a positive integer. [*Hint*: Use the equality $a^{2^{n+1}} = (a^{2^n})^2$.]

Exercise 7

Devise a recursive algorithm to find the nth term of the sequence defined by $a_0 = 1$, $a_1 = 2$, $a_2 = 3$, and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$, for n = 3, 4, 5, ...

(15 points)

(10 points)

(10 points)

;)

(15 points)

(10 points)

American University of Beirut Department of Computer Science CMPS 211 – Discrete Mathematics – Fall 14/15

Exercise 8

(10 points)

Use merge sort to sort 4, 3, 2, 5, 1, 8, 7, 6 into increasing order. Show all the steps used by the algorithm.

Exercise 9

(10 points)

Prove that the merge sort algorithm given in the lecture is correct.