American University of Beirut Department of Computer Science CMPS 211 －Discrete Mathematics－Fall 14／15

Please solve the following exercises and submit BEFORE 12：00 pm

 （noon）of Tuesday $\mathbf{9}^{\text {th }}$ ，December．
Exercise 1

Give a recursive algorithm for computing nx whenever n is a positive integer and x is an integer，using just addition．

Exercise 2

（15 points）
Give a recursive algorithm for finding the sum of the first n positive integers and prove that it is correct．

Exercise 3

（10 points）
Give a recursive algorithm for finding the maximum of a finite set of integers，making use of the fact that the maximum of n integers is the larger of the last integer in the list and the maximum of the first $\mathrm{n}-1$ integers in the list．

Exercise 4

（10 points）
Give a recursive algorithm for finding a mode of a list of integers．（A mode is an element in the list that occurs at least as often as every other element．）

Exercise 5

（15 points）
Describe a recursive algorithm for multiplying two non－negative integers x and y based on the fact that $\mathrm{xy}=2(\mathrm{x} \cdot(\mathrm{y} / 2))$ when y is even and $\mathrm{xy}=2(\mathrm{x} \cdot\lfloor\mathrm{y} / 2\rfloor)+\mathrm{x}$ when y is odd， together with the initial condition $\mathrm{xy}=0$ when $\mathrm{y}=0$ ．Prove that your algorithm is correct．

Exercise 6

（10 points）
Devise a recursive algorithm to find $\mathrm{a}^{2^{\mathrm{n}}}$ ，where a is a real number and n is a positive integer．［Hint：Use the equality $\mathrm{a}^{2^{\mathrm{n}+1}}=\left(\mathrm{a}^{2^{\mathrm{n}}}\right)^{2}$ ．］

Exercise 7

（10 points）
Devise a recursive algorithm to find the nth term of the sequence defined by $\mathrm{a}_{0}=1, \mathrm{a}_{1}=2$ ， $a_{2}=3$ ，and $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$ ，for $n=3,4,5, \ldots$.

American University of Beirut
 Department of Computer Science
 CMPS 211 - Discrete Mathematics - Fall 14/15

Exercise 8

(10 points)
Use merge sort to sort $4,3,2,5,1,8,7,6$ into increasing order. Show all the steps used by the algorithm.

Exercise 9

(10 points)
Prove that the merge sort algorithm given in the lecture is correct.

